CSE Qualifying Exam, Spring 2019: Numerical Analysis

Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- Please answer three of the following four questions. All questions are graded on a scale of 10. If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for clarity as well as correctness.

Questions:

- 1. Suppose a matrix $H \in \mathbf{R}^{n \times n}$ is of the form $H = I \alpha h h^T$ where $||h||_2 = 1$.
 - (a) Find a value (or values) of α that makes H orthogonal.
 - (b) One claims that for any given vector $y \in \mathbf{R}^{n \times 1}$, there is an orthogonal matrix H of the above form with which $Hy = (0 \ 0 \ \cdots \ 0 \ \beta)^T$ where β is a scalar. If this claim is true, then show how you would compute the vector h. If your answer is no, then present a counter example.
 - (c) Describe how you would solve a linear system Ax = b, where $A \in \mathbf{R}^{n \times n}$ is nonsingular, using the transformations of the above form.
- 2. (a) Does a singular value decomposition (SVD) exist for any matrix $A \in \mathbf{R}^{m \times n}$? If your answer is yes, prove it. If your answer is no, then explain why.
 - (b) Assume that m = n, $A^T = A$ and consider a SVD of A and an eigenvalue decomposition (EVD) of A. Under what conditions would SVD be the same as EVD? Justify your answer.
- 3. Consider a linear system $A\vec{x} = \vec{b}$ with A being a $m \times m$ symmetric positive definite matrix. Given an approximation \vec{x}_0 and a subspace K of \mathbb{R}^m , denote \vec{x}_1 as the minimizer of the following optimization problem,

$$\vec{x}_1 = argmin_{\vec{x} \in \{\vec{x}_0 + K\}} (\vec{x}^* - \vec{x})^T A (\vec{x}^* - \vec{x}),$$

where \vec{x}^* is the exact solution of $A\vec{x} = \vec{b}$.

- (a) Prove that $\vec{r}_1 = \vec{b} A\vec{x}_1$ is orthogonal to K.
- (b) If one selects $K = span\{\vec{r_0}\}$, where $\vec{r_0} = \vec{b} A\vec{x_0}$, derive a formula for $\vec{x_1}$.
- (c) Design an iterative algorithm, using the formula you obtained in (b), to compute solution of $A\vec{x} = \vec{b}$. What is the computational cost in each iteration of your algorithm?
- 4. Suppose A is a 2010001 \times 2010001 symmetric positive definite matrix with $||A||_2 = 100$ and $||A||_F = 101$.
 - (a) Give the sharpest lower bound on the condition number of A.
 - (b) One uses Gaussian Elimination with partial pivoting to solve the linear system $A\vec{x} = \vec{b}$. What is your estimate for the relative error of the numerical solution, assuming the machine error is 10^{-16} . You must justify your answer.