CSE Qualifying Exam: High-Performance Computing

Spring 2020

Instructions

- Please answer three of the following four questions. All questions are graded on a scale of 10. If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Please write clearly and concisely, explain your reasoning, and show all work. Points will be awarded for clarity as well as correctness.
- Unless otherwise specified, assume a distributed memory model of computation where a message of m words can be sent in $\mathcal{O}(\tau+\mu m)$ time, where τ denotes the latency and μ denotes the per word transfer time. You may assume each processor can send and receive one message within the same parallel communication step.

Problem 1

Suppose we have p interconnected processors, each with its own memory. Consider n particles where the position of each particle in 3-D space is known. Space is partitioned into p cells. The positions of the particles lying in the k th cell are stored only on processor k. If a pair of particles i and j are separated by a distance d less than a given distance r, we must compute the equal-and-opposite force on particle i and on particle j. This force depends on d and is used to update the position of particles i and j.
(a) Assuming a uniform random distribution of particles in a bounded 3-D domain, derive an asymptotic lower bound on the interprocess communication volume required to update the positions of all n particles.
(b) Give an algorithm that attains this lower bound.

Problem 2

The Hilbert space filling curve is a way to convert coordinates (x, y) into an index h such that two points with consecutive indices are always near each other in the plane.
We can write a Hilbert index as an integer in base $4, h=h_{1} h_{2} \cdots h_{n}$, where each $h_{i} \in\{0,1,2,3\}$.
Decoding a Hilbert index can be done recursively: we start with $x_{0}=y_{0}=0$, and we have four different update rules:

- if $h_{i}=0, x_{i} \leftarrow y_{i-1} / 2, y_{i} \leftarrow x_{i-1} / 2 ;$
- if $h_{i}=1, x_{i} \leftarrow\left(1+x_{i-1}\right) / 2, y_{i} \leftarrow y_{i-1} / 2$;
- if $h_{i}=2, x_{i} \leftarrow\left(1+x_{i-1}\right) / 2, y_{i} \leftarrow\left(1+y_{i-1}\right) / 2$;
- if $h_{i}=3, x_{i} \leftarrow\left(1-y_{i-1}\right) / 2, y_{i} \leftarrow\left(2-x_{i-1}\right) / 2$.

Write a parallel algorithm for decoding a Hilbert index. Your algorithm should run in $O(\log n)$ time.

Problem 3

Parallel HTML rendering. When a web browser downloads a web page, it receives it in HTML format. Let's assume a simplified form of HTML: the downloaded document is represented as a tree of page elements, as shown in Figure 1a. Each vertex is a page element; and page elements may be nested. If v is an element, let $P[v]$ be its parent and let $C[v]$ be the set of its children. For instance, in Figure 1a, $C[a]=\{b, c, g, h, i\}$ and $P[d]=b$.

Figure 1: Parallel HTML rendering problem
Given such a tree, the browser needs to render it, meaning to lay it out physically on the output device, such as a screen or printed page. Figure 1 b shows a hypothetical rendering. When fully rendered, every element v has known width and height and a known absolute position on the output device. Let's use S_{v} as a shorthand for this "state" of v. The problem is that the input tree (Figure 1a) initially holds only the nesting relationships and the content of each element; it does not have any size or position information, other than the nesting structure. In this scenario, we say $S_{v}=\emptyset$, to denote the initially unknown state.
However, suppose you have two special operations that can help resolve S_{v}.

- $S_{v}=\operatorname{place}\left(S_{a}, S_{b}\right)$: Let a and b be any pair of direct siblings, that is $P[a]=P[b]=v$, with known dimensions in S_{a} and S_{b}. Then this function will decide how to place these together (e.g., next to each other, on top of each other, or some other arrangement) and returns a new combined state, S_{v}, that captures this arrangement and their relative positions. You can think of the combined state as a kind of "virtual child" of v, so that one may compose placements as place $($ place $(S, T), U)=$ place(place $(S, U), T)$.
- $S_{v}^{\prime \prime \prime}=\operatorname{merge}\left(S_{v}^{\prime}, S_{v}^{\prime \prime}\right)$: Given two partial renderings of v, as might be produced by place(•,.), this operation reconciles them into a single rendering. That is, S_{v}^{\prime} might represent a partial rendering with some of the children of v while $S_{v}^{\prime \prime}$ does so for a different set of v^{\prime} s children. This operation will combine them. Similar to the above, you may further assume that merge $\left(S^{\prime}, \operatorname{merge}\left(S^{\prime \prime}, S^{\prime \prime \prime}\right)\right)=$ merge(merge ($\left.\left.S^{\prime}, S^{\prime \prime}\right), S^{\prime \prime \prime}\right)$.
Lastly, assume that for any leaf w (i.e., $C[w]=\emptyset$), the size is easy to compute by a call to place (\emptyset, w) $=$ place (w, \emptyset). You may also assume that the above operations cost $\mathcal{O}(1)$ time each. If you need more assumptions, state them clearly.

Please answer the following questions.
a. (70\%) Give an efficient parallel algorithm to render the page, that is, to fully resolve S_{v} for all v. "Efficient" in this case means with a total work that is as asymptotically close as you can manage to $\mathcal{O}(n)$ and a span or depth that is polylogarithmic in n. Analyze your algorithm.
b. (30%) Critique the assumptions of this problem. That is, which ones pose the "biggest threat" to the efficiency or correctness of your approach, and why?

Problem 4

Scheduling.

a. Scheduling for a Single Processor: Consider n jobs $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ that will arrive for execution on a single processor, one after each other. Let their arrival times be $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, respectively, with $a_{i} \leq a_{i+1}$. Also let $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be the respective execution times on that processor. If the processor is free when job j_{i} arrives, job starts without any wait and executes for t_{i} unit and it exits. Otherwise, job waits in the queue for its turn for execution (in the order it was received). Assume $a_{i}{ }^{\prime}$ s and t_{i} 's are distributed evenly across p processors. Design and efficient parallel algorithm to determine the waiting time incurred by each job. (60\%)
b. Scheduling for Multiple Processors: Now consider, we have m identical processors that jobs can be executed. Discuss the changes you would do to your algorithm; how they effect the execution time of your algorithm. (40%)

