CSE Qualifying Exam, Fall 2020: Numerical Methods

Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- No calculators, computers, phones, and/or internet usage allowed at any time during the exam.
- Please answer three of the following four questions. All questions are graded on a scale of 10 . If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for clarity as well as correctness.
- Good luck!

Question 1:

(a) Let

$$
A=\left[\begin{array}{cc}
1 & 1-4 \epsilon \\
1+4 \epsilon & 1
\end{array}\right]
$$

where $0<\epsilon<\frac{1}{4}$. What is the condition number of matrix A, measured in ∞-norm?
(b) Give the definition of backward stability for an algorithm.
(c) Given a matrix B with condition number 10^{4}, what is the expected relative error in the solution if one tries to solve $B^{T} B \vec{x}=B^{T} \vec{b}$ by a backward stable algorithm? (Assume that the machine precision is 10^{-16}.)

Question 2: Consider a matrix

$$
A=\left[\begin{array}{ccc}
6 & -1 & 0 \\
-1 & 5 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(a) Show that A is positive definite.
(b) Calculate the A-norm of the vector

$$
\vec{b}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

(c) Find a vector that is conjugate (A-orthogonal) to \vec{b}.
(d) Let $B \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix, $\vec{c} \in \mathbb{R}^{n}$ a given vector. Find the linear system whose solution is the minimizer of

$$
\min _{\vec{x}}\left\{\vec{x}^{T} B \vec{x}-\vec{c}^{T} \vec{x}\right\} .
$$

You must show the steps to obtain you result.
Question 3: Let $P \in \mathbb{C}^{m \times m}$ be a nonzero projector. Show that $\|P\|_{2} \geq 1$, with equality if and only if P is an orthogonal projector.

Question 4: Let $A \in \mathbb{C}^{m \times m}$ be a nonsingular matrix. For solving the system of equations $A \vec{x}=\vec{b}$, consider the method

$$
\vec{x}_{k+1}=\vec{x}_{k}+\alpha \vec{r}_{k}, \quad \vec{r}_{k}=\vec{b}-A \vec{x}_{k}
$$

where α is a scalar constant, starting with an initial approximation \vec{x}_{0}.
(a) Let $p_{k}(A)$ be the matrix polynomial at step k such that $\vec{r}_{k}=p_{k}(A) \vec{r}_{0}$. What is this polynomial?
(b) Suppose that the eignvalues of A lie in a circle in the complex plane centered at $z=2$ with radius $1 / 2$. What choice of α do you recommend for the method? What would you expect to be the corresponding convergence rate?

