## CSE Qualifying Exam, Fall 2022: Numerical Analysis

## Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- No calculators, computers, phones, or internet usage allowed at any time during the exam (except for purposes of electronic proctoring, e.g., Honorlock).
- Answer three of the following four questions. All questions are graded on a scale of 10 . If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for correctness as well as clarity.
- Good luck!

1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & 6 \\
2 & 5 & 7 \\
6 & 7 & 29
\end{array}\right)
$$

(a) Compute by hand the lower triangular Cholesky factorization satisfying $A=L L^{\top}$, i.e., $L$ is lower triangular.
(b) Prove that the lower triangular Cholesky factorization $A=L L^{\top}$ of any (symmetric, positive definite) matrix $A \in \mathbb{R}^{m \times m}$ satisfies

$$
A=\sum_{k=1}^{m} L_{:, k} \otimes L_{:, k} .
$$

Here, $L_{:, k}$ denotes the $k$-th column of $L$. For $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, the tensor product $u \otimes v \in \mathbb{R}^{m \times n}$ is defined as having entries $(u \otimes v)_{i j}=u_{i} v_{j}$.
(c) Conclude from (b), or prove in any other way, that the lower triangular Cholesky factorization of a symmetric positive-definite matrix is unique.
2. Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & 7 & 10 \\
2 & 1 & 3 & 5
\end{array}\right)
$$

(a) Determine the row rank of A. Explain how you arrived at your answer.
(b) Determine the column rank of $\mathbf{A}$.
(c) Prove that the answers to (a) and (b) must be the same.
(d) Besides computing the SVD or anything that is equivalent to computing the SVD, state a numerically stable method for determining the rank of an arbitrary matrix.
(e) Discuss the numerical difficulties associated with computing the rank of a matrix.
3. Suppose the matrix $A$ is real and symmetric. Consider the iteration

$$
X_{k+1}=X_{k}\left(3 I+X_{k}^{2}\right)\left(I+3 X_{k}^{2}\right)^{-1}
$$

starting with $X_{0}=A$.
(a) For the specific example that $A$ is a matrix with eigenvalues $\{-10,-9, \ldots-1,0,1, \ldots, 199,200\}$ what are the eigenvalues of $X_{7}$ ? Obviously, do not compute the above expression, since calculators and computers are not allowed, but a simplified expression for the eigenvalues will do.
(b) For a real symmetric matrix $A$ with $p$ positive eigenvalues, show that $X_{k}$ as $k \rightarrow \infty$ has $p$ eigenvalues of value 1 .
(c) If $A$ is square but not symmetric, does the statement in (b) still hold?
4. Let $A$ be an upper Hessenberg matrix such that its subdiagonal entries are all nonzero. Suppose that $A$ has an eigenvalue of 0 . Show that the QR algorithm converges to this eigenvalue 0 in a single iteration.

