CSE Qualifying Exam, Fall 2021: Numerical Analysis

Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- No calculators, computers, phones, or internet usage allowed at any time during the exam (except for purposes of electronic proctoring, e.g., Honorlock).
- Answer three of the following four questions. All questions are graded on a scale of 10. If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for correctness as well as clarity.
- Good luck!

1. Consider two real $m \times 3$ matrices A and V,

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, \qquad V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

where a_1 is the first column of A, etc. You wish to construct V such that $V^T V = I$ and such that

$$span(v_3) = span(a_3)$$

 $span(v_2, v_3) = span(a_2, a_3)$
 $span(v_1, v_2, v_3) = span(a_1, a_2, a_3)$

- (a) Write formulas for v_1 , v_2 , and v_3 .
- (b) If your formulas are executed on a computer using finite precision arithmetic, what issues may arise?
- (c) What is backward stability? Are your formulas backward stable?
- (d) If your formulas are backward stable, then how many floating point operations are required (count additions, subtractions, multiplications, and divisons as one operation each).
- (e) If your formulas are not backward stable, can you improve your formulas, or are your formulas useless?
- 2. Given a nonsingular *tridiagonal* matrix A of dimensions 5×5 , instead of computing an LU decomposition, one could compute the following decomposition:

$$A = MN$$

where

	[1	0	0	0	0			d_1	n_1	0	0	0]
	m_1	1	0	0	0			0	d_2	n_2	0	0
M =	0	m_2	1	m_3	0	,	N =	0	0	d_3	0	0
	0	0	0	1	m_4			0	0	n_3	d_4	0
	0	0	0	0	1			0	0	0	n_4	d_5

The matrices M and N are essentially triangular, since one can use successive substitution to solve systems of equations involving M or N.

- (a) Show how to compute the unknown values indicated in M and N, i.e., how to compute the factorization.
- (b) Prove that the (3,3) entry of A^{-1} is the same as $1/d_{33}$. (In fact, this result can be generalized.) Hint: first try to prove this result if you have a regular LU decomposition.
- 3. For $A \in \mathbb{R}^{m \times n}$, consider the SVD of A, $U^T A V = \Sigma$ and let its singular values be $\sigma_1 \geq \cdots \geq \sigma_p \geq 0$ where $p = \min\{m, n\}$.
 - (a) Prove $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_p^2}$.
 - (b) Prove

$$\sigma_{\max}(A) = \max_{y \in \mathbb{R}^m, x \in \mathbb{R}^n} \frac{y^T A x}{\|x\|_2 \|y\|_2}.$$

4. Suppose $A_o \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and consider the following iteration:

for
$$k = 1, 2, ...$$

 $A_{k-1} = G_k G_k^T$ (Cholesky factorization)
 $A_k = G_k^T G_k$
end

(a) Show that this iteration is defined.

(b) Show that if $A_o = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ with $a \ge c$ has eigenvalues $\lambda_1 \ge \lambda_2 > 0$, then the A_k converge to $diag(\lambda_1, \lambda_2)$.