CSE Ph.D. Qualifying Exam, Spring 2021 High Performance Computing

Instructions:

Please answer three of the following four questions. All questions are graded on a scale of 10. If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.

Questions:

1. Consider function $f(x)$ which is defined as follows: $f(1)=1$. For $x>1$,

$$
f(x)= \begin{cases}f\left(\frac{x}{2}\right) & \text { if } x \text { is even } \\ f(3 x+1) & \text { if } x \text { is odd }\end{cases}
$$

It is conjectured that for all integer values of $x, f(x)$ resolves to 1 . Design efficient parallel strategies to test this conjecture $\forall x \leq N$.

Please provide a brief description of key ideas, and not pseudocode.
2. Consider the multiplication of two matrices A and B, where A has dimensions $m \times k$ and B has dimensions $k \times n$. Suppose that you are given p interconnected distributed memory compute nodes and that communication of 1 floating point word between two nodes is 100 times more expensive (in wall-clock time) than 1 floating point operation.
(a) Given m, k, n, and p, derive an algorithm that minimizes the total time for performing the multiplication. You do not need to use all p compute nodes. Your answer is expected to be different depending on the values of m, k, n, and p. Be sure to describe how the matrices A and B are initially distributed on the compute nodes, and also how the result is distributed.
(b) Now assume that each compute node has a local memory of M words that is assumed to be small. Reading and writing from local memory is 10 times more expensive than 1 floating point operation. Prove a lower bound for the computation time in terms of m, k, n, p, and M. Again, you can use up to p compute nodes.
Hint: The SUMMA and Cannon algorithms are not solutions to the above problems.
3. Suppose we have a hypercube network of $N=2^{m+n}$ processors. Assume that a matrix $A \in \mathbb{R}^{2^{m} \times 2^{n}}$ is distributed on the network, so that $A_{i, j}$ is in the memory of processor p such that $(p)_{2}=\left((i)_{2},(j)_{2}\right)$, where $(k)_{2}$ is the binary representation of the number k and (x, y) is the concatenation of bits. For example if $m=3$ and $n=2, A_{5,1}$ is assigned to processor 21, because $(21)_{2}=10101=(101,01)=\left((5)_{2},(1)_{2}\right)$.
Write an algorithm to store $B=A^{T}$, so that $B_{i, j}=A_{j, i}$ and B follows the same memory layout rule as A.
Your algorithm should assume each process can only store a constant number of matrix element at a time. For full points, you should prove that your algorithms uses the fewest rounds of communication possible.
4. Given a binary matrix b with M rows, N columns, of Boolean values (i.e., 0 and 1). Design and analyze an efficient parallel algorithm that finds the largest (most elements) rectangular subarray containing all ones.

Be sure to describe how the matrix b is initially distributed on the compute nodes, and where the result is stored.

