CSE Qualifying Exam, Spring 2021: Numerical Analysis

Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- No calculators, computers, phones, or internet usage allowed at any time during the exam (except for purposes of electronic proctoring, e.g., Honorlock).
- Answer three of the following four questions. All questions are graded on a scale of 10 . If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for correctness as well as clarity.
- Good luck!

Question 1: Consider the least squares problem

$$
\min _{x}\|b-A x\|_{2}^{2}
$$

where

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1+\epsilon
\end{array}\right), \quad b=\left(\begin{array}{l}
2 \\
3 \\
2
\end{array}\right)
$$

where $\epsilon \in \mathbb{R}$.
(a) Find the normal equations and the exact least squares solution.
(b) Explain a good numerical algorithm to solve this problem. Explain why the suggested method is a good algorithm and give full details of each step of the algorithm.

Question 2:

Let A be $\mathbb{R}^{m \times n}$ and B be $\mathbb{R}^{n \times m}$.
(a) Show that the matrices

$$
\left(\begin{array}{cc}
A B & 0 \\
B & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & 0 \\
B & B A
\end{array}\right)
$$

are similar.
(b) Show that the nonzero eigenvalues of $A B$ are the same as those of $B A$.

Question 3: Given a square matrix A and a set of m scalars $c_{i}, i=1, \ldots, m$, define $A_{i}=A+c_{i}+I$ where I is the identity matrix. The number m may be large.

Suppose you wish to solve set of m linear systems

$$
A_{i} x=b
$$

that all have the same right-hand side vector, b. Give an efficient algorithm to solve this set of problems, i.e., more efficient than solving all m problems independently.

Question 4: Consider a symmetric, nonsingular matrix

$$
H=\left[\begin{array}{cc}
0 & B \\
B^{T} & A
\end{array}\right]
$$

where B has dimensions $m \times n$ with $m \geq n$. Give a backward stable finite algorithm for computing the factorization

$$
H=Q M Q^{T}
$$

where Q is orthogonal and M has the form

$$
M=\left[\begin{array}{ccc}
0 & 0 & Y^{T} \\
0 & X & Z^{T} \\
Y & Z & W
\end{array}\right]
$$

where X is symmetric positive definite, W is symmetric, and Y is square and lower anti-triangular.
The anti-diagonal of a matrix is the diagonal from the top-right to the bottom-left. A lower anti-triangular matrix is zero above the anti-diagonal, i.e., the $r \times r$ matrix Y is lower anti-triangular if $Y_{i j}=0$ for $i+j \leq r$.

Your algorithm must be finite, meaning that it completes after a fixed number of steps. In other words, your algorithm cannot compute eigenvalues or singular values.

