CSE Qualifying Exam, Spring 2023: Numerical Methods

Instructions:

- This is a CLOSED BOOK exam. No books or notes are allowed.
- No calculators, computers, phones, or internet usage allowed at any time during the exam (except for purposes of electronic proctoring, e.g., Honorlock).
- Answer three of the following four questions. All questions are graded on a scale of 10 . If you answer all four, all answers will be graded and the three lowest scores will be used in computing your total.
- Show all your work and write in a readable way. Points will be awarded for correctness as well as clarity.
- Good luck!

1. Given a nonsingular matrix A, the Jacobi iterative method for solving the linear system of equations $A x=b$ is

$$
x^{(k+1)}=x^{(k)}+D^{-1}\left(b-A x^{(k)}\right)
$$

where D is the diagonal matrix consisting of the diagonal of A, and superscripts denote an iteration number. The above iterative method uses an initial approximation $x^{(0)}$. We say that the Jacobi method converges for any initial approximation if and only if the spectral radius of the iteration matrix $\left(I-D^{-1} A\right)$ is less than 1 .

Prove or disprove the following statement: if A is symmetric and positive definite and the Jacobi method converges (according to the above definition), then

$$
\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right| \leq\left|x_{i}^{(k)}-x_{i}^{(k-1)}\right|
$$

for all components x_{i} of the vector x and for all k.
2. Suppose $A \in \mathbb{R}^{m \times m}$ is strictly column diagonally dominant, which means that for each k,

$$
\left|a_{k k}\right|>\sum_{j \neq k}\left|a_{j k}\right| .
$$

(a) Show that if Gaussian elimination with partial pivoting is applied to A, no row interchanges take place.
(b) Give the smallest upper bound you can for $\|L\|_{1}$. The 1-norm is defined as $\|L\|_{1}=$ $\max _{j} \sum_{i}\left|L_{i j}\right|$.
3. Let $A \in \mathbb{R}^{m \times n}$ be a real matrix with $m \geq n$. Let its singular value decomposition be $A=U \Sigma V^{T}$, with orthogonal matrices $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$, and an $m \times n$ diagonal matrix Σ with entries $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$.
Let u_{i} and v_{i} denote the i-th column of U and V, respectively. Let A_{k} denote the rank- k approximation of A given by

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

(a) Prove that A_{k} is the best rank- k approximation to A in the spectral norm, i.e.,

$$
\left\|A-A_{k}\right\|_{2}=\sigma_{k+1} \leq\left\|A-B_{k}\right\|_{2}
$$

for any rank- k matrix $B_{k} \in \mathbb{R}^{m \times n}$.
(b) Prove that A_{k} is the best rank- k approximation to A in the Frobenius norm, i.e.,

$$
\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{n} \sigma_{i}^{2} \leq\left\|A-B_{k}\right\|_{F}^{2}
$$

for any rank- k matrix $B_{k} \in \mathbb{R}^{m \times n}$.
4. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a symmetric and positive-definite matrix.
(a) Provide an algorithm for computing the lower-triangular Cholesky factorization \mathbf{L} of $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$. Is the \mathbf{L} satisfying this equation unique? If not, what are the degrees of freedom?
(b) For $\bar{m}_{1} \ldots \bar{m}_{k}$ positive integers summing to m consider the block matrix $\overline{\mathbf{A}}$ with block sizes given by the $\bar{m}_{1} \ldots \bar{m}_{k}$. This means, that the entry $\overline{\mathbf{A}}_{i j}$ is itself an element of $\mathbb{R}^{m_{i} \times m_{j}}$, with entries taken from the corresponding indices of \mathbf{A}.
Show that there exists a block-lower triangular Cholesky factor $\overline{\mathbf{A}}=\overline{\mathbf{L}} \overline{\mathbf{L}}^{\top}$. Characterize its uniqueness properties and provide an algorithm for computing it.
(c) Let $\hat{m}_{1} \ldots \hat{m}_{l}$ be another sequence of positive integers summing to m, with $\hat{m}_{l}=\bar{m}_{k}$. Consider the corresponding block matrix $\hat{\mathbf{A}}$ and block-lower triangular Cholesky factorization $\hat{\mathbf{A}}=\hat{\mathbf{L}} \hat{\mathbf{L}}^{\top}$. Show that $\hat{\mathbf{L}}_{l l} \hat{\mathbf{L}}_{l l}^{\top}=\overline{\mathbf{L}}_{k k} \overline{\mathbf{L}}_{k k}^{\top}$, irrespective of the choice of $\bar{m}_{1} \ldots \bar{m}_{k}$ and $\hat{m}_{1} \ldots \hat{m}_{l}$ for all possible block-Cholesky factors (that is, despite the nonuniqueness of the block-Cholesky factor). Hint: First try to show the result for a sequence $\hat{m}_{1} \ldots \hat{m}_{l}$ that makes the proof as simple as possible.

